117: Training Transformers¶
Chapter Overview
Training a [[110-transformer-architecture/index|Transformer]]-based [[101-Foundation-Models|Foundation Model]] is a monumental undertaking that requires massive datasets, vast computational resources, and sophisticated optimization techniques. This note provides a high-level overview of the standard training process.
The Core Training Loop¶
At its heart, training a Transformer is a supervised learning process, even if the "labels" are self-generated. The goal is to iteratively adjust the model's weights to minimize a loss function. A single training step follows a standard deep learning pattern, repeated millions of times.
flowchart TD
subgraph DataInput ["📊 Training Data Input"]
A["🗂️ Batch of Training Data<br/>(e.g., text sequences)"]
end
subgraph TrainingLoop ["🔄 The Training Loop"]
direction TB
B["1️⃣ Forward Pass<br/>Model makes predictions"]
C["2️⃣ Calculate Loss<br/>Compare predictions to targets"]
D["3️⃣ Backward Pass<br/>Compute gradients"]
E["4️⃣ Optimizer Step<br/>Update model weights"]
B -->|Predictions| C
C -->|Loss value| D
D -->|Gradients| E
E -.->|Updated weights| B
end
subgraph Result ["🎯 Final Outcome"]
F["✅ Trained Model<br/>Ready for inference"]
end
A --> B
TrainingLoop -->|After many epochs| F
%% Styling
classDef inputStyle fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
classDef forwardStyle fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef lossStyle fill:#fce4ec,stroke:#c2185b,stroke-width:2px
classDef backwardStyle fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef optimizerStyle fill:#e8f5e8,stroke:#388e3c,stroke-width:2px
classDef resultStyle fill:#c8e6c9,stroke:#1B5E20,stroke-width:3px
classDef subgraphStyle fill:#f9f9f9,stroke:#666,stroke-width:2px
class A inputStyle
class B forwardStyle
class C lossStyle
class D backwardStyle
class E optimizerStyle
class F resultStyle
class DataInput,TrainingLoop,Result subgraphStyle